A structural basis for H-NOX signaling in Shewanella oneidensis by trapping a histidine kinase inhibitory conformation.

نویسندگان

  • W Kaya Erbil
  • Mark S Price
  • David E Wemmer
  • Michael A Marletta
چکیده

Heme nitric oxide/oxygen (H-NOX) proteins are found in eukaryotes where they are typically part of a larger protein such as soluble guanylate cyclase and in prokaryotes where they are often found in operons with a histidine kinase, suggesting that H-NOX proteins serve as sensors for NO and O(2) in signaling pathways. The Fe(II)-NO complex of the H-NOX protein from Shewanella oneidensis inhibits the autophosphorylation of the operon-associated histidine kinase, whereas the ligand-free H-NOX has no effect on the kinase. NMR spectroscopy was used to determine the structures of the Fe(II)-CO complex of the S. oneidensis H-NOX and the Fe(II)-CO complex of the H103G H-NOX mutant as a mimic of the ligand-free and kinase-inhibitory Fe(II)-NO H-NOX, respectively. The results provide a molecular glimpse into the ligand-induced conformational changes that may underlie kinase inhibition and the subsequent control of downstream signaling.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Structural insights into the role of iron-histidine bond cleavage in nitric oxide-induced activation of H-NOX gas sensor proteins.

Heme-nitric oxide/oxygen (H-NOX) binding domains are a recently discovered family of heme-based gas sensor proteins that are conserved across eukaryotes and bacteria. Nitric oxide (NO) binding to the heme cofactor of H-NOX proteins has been implicated as a regulatory mechanism for processes ranging from vasodilation in mammals to communal behavior in bacteria. A key molecular event during NO-de...

متن کامل

Regulation of nitric oxide signaling by formation of a distal receptor-ligand complex

The binding of nitric oxide (NO) to the heme cofactor of heme-nitric oxide/oxygen binding (H-NOX) proteins can lead to the dissociation of the heme-ligating histidine residue and yield a five-coordinate nitrosyl complex, an important step for NO-dependent signaling. In the five-coordinate nitrosyl complex, NO can reside on either the distal or proximal side of the heme, which could have a profo...

متن کامل

Is histidine dissociation a critical component of the NO/H-NOX signaling mechanism? Insights from X-ray absorption spectroscopy.

The H-NOX (Heme-Nitric oxide/OXygen binding) family of diatomic gas sensing hemoproteins has attracted great interest. Soluble guanylate cyclase (sGC), the well-characterized eukaryotic nitric oxide (NO) sensor is an H-NOX family member. When NO binds sGC at the ferrous histidine-ligated protoporphyrin-IX, the proximal histidine ligand dissociates, resulting in a 5-coordinate (5c) complex; form...

متن کامل

Phosphorylation-dependent derepression by the response regulator HnoC in the Shewanella oneidensis nitric oxide signaling network.

Nitric oxide (NO) is an important signaling molecule that regulates diverse physiological processes in all domains of life. In many gammaproteobacteria, NO controls behavioral responses through a complex signaling network involving heme-nitric oxide/oxygen binding (H-NOX) domains as selective NO sensors. In Shewanella oneidensis, H-NOX-mediated NO sensing increases biofilm formation, which is t...

متن کامل

Activation of an Otherwise Silent Xylose Metabolic Pathway in Shewanella oneidensis.

UNLABELLED Shewanella oneidensis is unable to metabolize the sugar xylose as a carbon and energy source. In the present study, an otherwise silent xylose catabolic pathway was activated in S. oneidensis by following an adaptive evolution strategy. Genome-wide scans indicated that the S. oneidensis genome encoded two proteins similar to the xylose oxido-reductase pathway enzymes xylose reductase...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Proceedings of the National Academy of Sciences of the United States of America

دوره 106 47  شماره 

صفحات  -

تاریخ انتشار 2009